
REVISTA MEXICANA DE INGENIERIA QUIMICA Vol. 3 (2004) 161-175

Publicado por la Academia Mexicana de Investigación y Docencia en Ingeniería Química, A. C 161

DESIGNING COMPONENTS FOR DYNAMIC PROCESS SIMULATION

DISEÑO DE COMPONENTES PARA LA SIMULACION DE PROCESOS DINAMICOS

F. Alarcón-Gálvez 1, J. González-Herrera 2, R. Guzmán-Sánchez 3, E. Morales-Manzanares 4,
C. Montiel-Maldonado 5 and D. Juárez-Romero 6*

1 Centro Nacional de Investigación y Desarrollo Tecnológico (Cenidet)

2 Instituto Mexicano del Petróleo Av. 100 Metros, México, D.F.
3 ESIQIE, IPN Unidad Profesional "Adolfo López Mateos"

4 ITESM Campus Morelos, Av. Paseo de la Reforma 182-A, Morelos
5 Departamento de Ing. Química, Facultad de Química Cd. Universitaria 04510, UNAM

6 Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001,
Col. Chamilpa, C. P. 62210 Cuernavaca, Morelos, México.

Abstract

This work shows a prototype system for the construction of dynamic models for simulation of process plant networks
with an improved warranty of producing a well posed system of differential algebraic equations. Every model
contains a set of specified procedures that are coded in the C programming language, and it is automatically analysed
with similar principles to those of the algorithmic differentiation. Moreover, the scheme to connect two pieces of
equipment to ensemble the equations and associated iteration matrix is presented. The proof of these concepts is
showed through dynamic simulations of a water supply cycle, and a drum-superheater cycle.

Keywords: model building, dynamic model testing, flowsheet composing.

Resumen

Este trabajo presenta un sistema prototipo para la construcción y simulación de modelos dinámicos de redes de
plantas de proceso que garantiza la producción de un sistema correctamente planteado de ecuaciones àlgebro-
diferenciales. Cada modelo contiene un conjunto de procedimientos específicos codificados en C y es
automáticamente analizado con principios similares a los utilizados en la diferenciación algorítmica. También se
presenta el mecanismo para el ensamblado de ecuaciones y matrices de iteración asociadas para componentes de
equipo. La prueba de estos conceptos se muestra por medio de simulaciones dinámicas de un sistema de
aprovisionamiento de agua y un ciclo de supercalentamiento en un tanque.

Palabras clave: construcción de modelos, prueba de modelos dinámicos, generación de diagramas de proceso.

1. Introduction

To support projects for the
development of process plant simulators such
as those of the Training Operators Centre,
CAOI in Tula, Hidalgo, and demonstration
projects at the Electrical Research Institute,
Mexico (Zanobetti 1989; Resendiz y Nagore,
1994), several academic undertakings have
been executed. Solving of hydraulic
networks with high interaction required
robust nonlinear equation solver. Also when
a process unit for dynamic simulation is
coupled to another, it can increase, maintain
or decrese its stability, thus, we concluded

that implicit Differential-Algebraic solvers
are needed (Alarcón et al., 2001).

In the present work, we developed tools
for the analysis of dynamic models, which are
represent by DAE equations, (Molina et al,
1999) and will compose a process network
The present work is based in two premises
aiming to represent a process by connecting
process units, which can be analyzed and
solved:

The first premise is the decompositions
of the network suggested by Bär et al. (1993),
Eq. 1, which allows us to represent a process
network by connecting the process units,

AMIDIQ

*Autor para la correspondencia E-mail: djuarez@buzon.uaem.mx
Tel/fax: (55) 73297084

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 162

through streams, given a configuration of the
existing plant.
Process = process – units +

streams + configuration (1)

The second premise is based on the
computational graph used to represent
internally a computer code, Eq. 2:

Process unit = operators + variables +

control flow (2)

This allows us to analyze different
characteristics of a process unit following the
computational graph. This graph, which is
produced while the program is executed,
describes the behaviour of variables that are
modified by the operators in accordance with
the control flow:

From these premises, the development
of the paper is as follows: the second section
shows a model decomposition based on
process units, their characteristics, and their
form of analysis. Section three is related to
the type of connections used to build process
networks and the form of evaluating physical
properties. Section fourth deals with the
network composition, the solution method,
and implementation tools. The fifth section
shows results of applying this scheme, and
finally conclusions derived from this work
are presented.

2. Process units

Some of the main issues related to
object oriented modeling are (Holibaugh,
1991): to define representation techniques to
asses if a model has a high fidelity behavior,
to test if a model is properly formed and to
verify its completeness and consistency. To
care for these issues, we required the
following characteristics of a model:

Operability: To represent the full set of
operating regions as the reference unit i.e.:
starting up, transition (forward and reverse
flow), and malfunctions. This feature is

essential to train operators for dealing with
failures or unsafe conditions.
Configurability: To allow the same changes
in unit sizes and feasible connections as the
reference unit.

Observability: To be able to obtain the state
of the model from the model outputs. This
characteristic allows the validation of the
model using the measurements obtained in
the reference process unit.

Traceability: To be able to trace different
characteristics of the model. For instance, the
matrix that relates equations to variables
(incidence matrix) used for the detection of
arithmetic errors. This requirement also needs
that the model’s code is clearly written with
expressive and standard language features.

2.1 Model characteristics

We use three views to describe a model:

- Phenomenological view
- Mathematical view
- Computational view

Each view will be discussed in the
following subsections

2.1.1 Phenomenological view

This view represents the model as the actual
unit works. Consider the working regions of a
drum for steam generation, Fig. 1:

 WPs

WWw

WDc

WEc 04

02

01

03

Fig. 1. Drum model.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 163

- During start up: Filling, heating, emptying.
- During transition: Evaporating, steam

generation, steam released to atmosphere
- During malfunctions: Leaking due to
couple rupture, loosing pressure due to a
down-stream failure, changing steam
pressure gradient due to up-stream
oscillations.

The outcome is that a model, which
represents all these regions, must contain
conditional clauses to delimit the equations
according to each region. Some of these
conditional clauses can be nested.

Balance equations for this model can be
obtained applying Bernoulli’s Equation for
two phases:

∑−+
iW

dt
vl dM dM

 = r Mass (3)

Pin - P out + g ∑ρ∆Z = r Momentum (4)

∑−
+

ii
vvll WH

dt
MdHMdH =r Energy (5)

Where:

M = Mass H = Enthalpy
ρ = Density g = Gravity
P = Pressure W = Mass flow
∆Z = Height R = Residuals vector

We represent balance equations as
residuals to allow a wide range of operation
conditions without assuming a specific
causality. The terms of these equations are
evaluated according to the working regions.

2.1.2. Mathematical view

This view provides the required
functionality for the model. For this purpose
we use the following classification of
equations (Ponton and Gawtrhop, 1991):

Balance equations. These represent changes
in mass, momentum and energy.

Transfer mechanism equations. These define
the rate of transfer into, out of, or between
phases.
Constitutive relationships: These equations
relate intensive variables in terms of
extensive variables.
Constraints: These expressions limit the
application of the equations (maximum or
minimum flows), or verify that adequate
values are used as arguments of arithmetic
expressions.

The model equations representing the
behavior of a unit can be grouped in a
mathematical form as:

V = a(u, x, y, p)

Intermediate equations (6)

A(y)
dt

tdy)(– f(t, u, v, x, y) = rd

Differential equations (7)

G(t, x, y, u) = ra

Algebraic equations (8)

Z = h(p, u, v, x, y)

Signal equations (9)

Where:
p ≡ unit parameters, which do not vary with

time.
u(t) ≡ external continuous variables.
v(t) ≡ intermediate variables that are used to

store the value of some computations.
x(t) ≡ algebraic state variables that do not

have accumulation, but change with time.
y(t) ≡ differential state variables, which have

accumulation, or time derivatives
z ≡ signals, variables whose value can be

displayed in panels or registers.
ra ≡ algebraic residuals.
rd ≡ differential residuals.
a, f, g, h are real valued functions.
A(y) is a nonsingular real matrix.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 164

The procedural (explicit) form of
intermediate equations allows efficiency in
the calculation, while the declarative form of
the balance equations (the equation presents
a relationship between the variables) allows
the flexibility required for the specified
variables.

2.1.3 Computational view

The computational view is
implemented by coding the equations in a set
of procedures. To increase understanding of
the code among users, and to detect possible
coding errors we use a common model
description. This is composed by procedures
and variables with a specific naming.

2.1.4 Naming of model’s procedures

The user writes the model in standard C
language with the name of the unit as its file
name EeEquipo.c and header
EeEquipo.h. (Ee is replaced with two
literals representing the referred unit). As we
shall see ahead, once the model is
successfully tested it is automatically
converted in a C++ model class. Every
process unit is built within a set of
procedures that contain the different types of
equations, coded by the developer with
predefined names, Table 1.

Table 1. Standard procedures in a model.

Procedure
Name

Purpose

Scale() Defines geometry and capacity
parameters, p.

Start
(Time)

Sets initial, x*, and starting
conditions, y0

.
Behave
(Time,
EeR[])

Evaluates the intermediate
variables, and evaluates the
residuals of the conservation
equations, ra, rd.

Operate
(Time)

Modifies external variables, u.

Signal
(Time)

Evaluates signal variables, z.

2.1.5 Naming of types of model’s variables

The variables allowed are of basic type
(integers, floats) or arrays. No composite
types like structures are allowed. State
variables, inputs, parameters and signals are
global variables.

The intermediate variables are local,
since they are only used in the model. Other
variables are global. The use of global
variables allows using the same form of
invoking different type of models. The user
can also code other procedures required for
the model.

The following nomenclature that
defines the different types of variables is
adopted:

a global variable name is composed by 8
characters with a general form Ee##ΦΦ ϕT.

 Tk 01 Ht V A
 | | | | |_____Type : Algebraic
 | | | |________Phase : Vapor
 | | |___________ Property: Enthalpy
 | |______________ Port : 01
 |__________________Unit : Tank

a local variable name is composed by six
characters since it does not have the unit
identifier.

2.2 Physical properties

The requirements of the functions
constructed to evaluate physical properties of
fluids are:

 ٠ Completeness. To cover all the range of
working regions.

 ٠ Explicitness. To be explicit in the
required physical properties to avoid inner
iterations that could deteriorate the global
iteration cycle.

 ٠ Functionality. To obtain properties and
their first derivatives by continuous
expressions, since some expressions in the
model might also require derivatives. Newton
method requires continuity in the derivatives
to maintain the direction of convergence.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 165

 ٠ Accuracy. To compute the values of
physical properties to fulfil the required
precision.

To fulfil these requirements, we
approximate fluid properties by piecewise-
continuous polynomials in terms of pressure
and enthalpy. Given the value of the state
variables, a model evaluates its required
physical properties. For the saturated phase:

ϕs = ϕ s (√P) (10)

Otherwise: ϕ = ϕ (√P, H) (11)

First derivatives with respect to the

state variables are also evaluated. First
derivatives are evaluated as the derivatives of
these polynomials. These derivatives have
only slight discontinuities in junctions
between segments of every polynomial,
which do not affect the iteration process.

2.3 Model analysis

Model analysis is necessary to obtain
its algorithmic properties so it can reproduce
high-fidelity behaviour. After a given
formulation was defined, a model is coded
and analyzed.

Our scheme for model-analysis is based
on the schemes used by Grienwank (2000)
for algorithmic differentiation using operator
overloading. The basic principle relays on
the ensemble of the terms of an expression
using the same computational graph to form
the final result (Molina et al., 1999), similar
to the chain rule. When this model-analysis
is executed, all possible branches, cycles and
procedures of the code are traced. Tolsma
and Barton (1998) based in their
computational experiments, concluded that
algorithmic differentiation has significant
advantages over finite differences, symbolic
differentiation and hand coding
differentiation in terms of speed and memory
usage.

After the formulation was defined,
models were coded and analysed to obtain:
- Assignment & reference. This analysis
detects uninitialized global variables,
unassigned intermediate variables, and un-
referenced local variables that can be used to
evaluate the balances. The correct assignation
and reference is required to avoid difficulties
with delay of information caused by improper
equation sequence.
- Structure & states. This analysis obtains the
incidence matrix of the model. Incidence
matrix has a row for every equation and a
column for every variable. If a variable j
appears in equation i, the position i,j of this
matrix is marked (Mah, 1990). With this
matrix it is possible to detect block of
equations that could cause structural or
numerical difficulties.

Costa, Griño and Basañez (1998)
generated models with Differential-Algebraic
equation where its equations are
differentiated symbolically using Maple to
produced a Jacobian, and is solved
numerically using DASPK, Which is a solver
with variable order, variable step-size with
the backward differentiation formula (Brenan
et al,, 1996).

However, models cannot be
differentiated symbolically when they contain
conditional clauses that bound the working
regions; or cycles, which evaluate several
compounds in a mixture.

Example 1

Starting for a particular tank model equations:

/* Mass balance */
TnR[0] = Tn00MaLD - Tn01WmLA +
Tn02WmLA - Tn03WmLA;
TnR[1] = Tn02PaLA - Am20PaLA -
(9.81 * Tn00MaLE / Tn00Ar_P) +
(Tn02Pd_P * fabs(Tn02WmLA) *
Tn02WmLA) - Tn02Pa_P;
/* Momentum balances */
TnR[2] = Tn03PaLA - Am20PaLA +
(Tn03Pd_P * fabs(Tn03WmLA) *
Tn03WmLA) - Tn03Pa_P;

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 166

The incidence matrix obtained for this model
is:

Residual
/

Variable

Tn00
MaE or
Tn00
MaD

Tn01
WmLA

Tn02
WmLA

Tn02
PaLA

Tn03
PaL
A

Tn03
Wm
LA

TnR[0] X X X 0 0 X
TnR[1] X 0 X X 0 0
TnR[2] 0 0 0 0 X X

- Efficiency & robustness. This analysis
detects vulnerable arithmetic expressions.
Since models represented as a set of DAEs
offer more flexibility than models with only
algebraic (resistance) or with only
differential (accumulation) equations, but at
the same time they are more fallible. It is
also required to evaluate the computing effort
requirements.

2.4 Model packing

Once a model is successfully analyzed,
(i.e. it does not have any type of severe
diagnoses), it is packed. Colhun and
Lewandowski (1994) use classes to store the
state variables, and ports in the developments
of dynamic models.

Model packing binds all model
variables and procedures in a C++ class. It
increases cohesion; it also allows
incorporating several units of the same type
in a process network. A preprocessor builds
the following data structures and functions
automatically, Tabla 2.

Table 2. Data structures and procedures generated for model packing.

Data structure Purpose

Class Equipment Contains the procedures and the ports required to describe the mathematical model.

Struct Port Contains the variables, which are transported from one unit to another. One unit
has at least one port. Ports correspond to physical connection through which
exchange takes place.

Struct State Contains the variables that define the state of the process unit, as well as its
maximum and minimum value allowed.

Procedure Purpose

Incide() Assigns the number of states, and number of balances of every process unit

Couple(Port01,
Port02)

Assigns the relationships between the list of ports, which can be connected in a
unit, and model’s state variables.

3. Connectors

3.1 Streams

Stream is a set of variables that
communicate a process unit with another
without any accumulation. The number and
type of each variable characterize a stream,
Table 3.

Stream variable convey state variables.
Intermediate variables required in a model
are reevaluated internally.

Table 3. Type of streams.

Stream Air - Gas Hidraulic Thermic
Component Wm, Pa,

Ht
Wm, Pa,

Ht
Ql, Tm

3.2 Connection characteristics

In this section we also present the
characteristics of connections as
phenomenological, mathematical and
computational view.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 167

3.2.1 Phenomenological view

Physical connection is established
between ports, Fig 2.

Bb = Vv

Equipment

Operations

PISignals

Fig. 2. Coupling two units by a common stream.

3.2.2. Mathematical view

Equality is established for the elements
of a stream. When stream Si is connected
with stream Sj, then Si, k = Sj,k ∀ elements in
the connecting stream, k.

3.2.3 Computational view

A pair of connected streams shares the
same space in memory. Fig. 2 shows the
mechanism used to establish model
connections. When Bb is connected to Vv the
residuals of the network are formed
concatenating both sets of residuals.

Matrix of partial derivatives for
composed Pump-valve (Jacobian):

 Bb01

WmLA
Bb01
PaLA

Bb02
WmLA

Bb02
PaLA

Vv01
PaLA

Vv02
PaLA

R[0] 1 0 -1 01 0 0

R[1] 0 -1 -dBb1 1 0 0

R[2] 0 0 1 0 -1 0

R[3] 0 0 0 -
Vv00
Ar_P

dVv1 Vv00
Ar_P

where

dBb1 = Bb00Pd2P + Bb00Pd3P*(fabs(Bb02WmLA) +
Bb02WmLA*sign(Bb02WmLA))

dVv1 = Vv00Pd_P*(fabs(Vv02WmLA) +
Vv02WmLA)*sign(Vv02WmLA))

3.3 Connection Analysis

A connection between two ports can be
established if:

1. Connecting ports do not belong to the same
process unit.

2. Both ports have the same type.

3. They have complementary direction of
connection (input with output) or one of
them is an in/output port. Figs. 3 to 5 show
different types of connections:

Fig. 3. Indistinct Ports.

Fig. 4. Complementary ports. Feasible.

Fig. 5. Unfeasible connection.

Figs.3 and 4 present feasible

connections. In Fig. 5 an infeasible
connection is presented, since both have the
same connecting direction.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 168

4. Network

4.1 Network specification

A process model based on physical
principles implies the specification of
balance equations. When the residual form
of balance equations (as in Eqns 7, 8) is used
the following advantages are obtained:

٠ They fully describe the state of a system in
relation to its material properties and its
geometry (Gerstlauer, et al., 1994).
٠ They represent accurately the global
behavior without assuming any causality or
strength of interaction between neighboring
units (Cellier, Hilding, Elquist, 1993).
٠ They are additive. The total residual vector
can be formed by sequential aggregation of
the residuals of every model, according to the
specific network configuration.

Hence, the user composes the process

network by a set of process units that are
connected by ports transporting streams. A
process network is built specifying the
connection among units analogous to an
electric wiring or to a process piping.

The network is defined in a unique
form by:
1. Specifying the components
2. Specifying the connections
3. Specifying the initial and operating
conditions.

We shall explain every stage in the
following subsections.

4.1.1 Specifying components

The user selects the elements used to
compose a network from a process unit
“menu” answering Yes/No. This “menu” is
located in the file RedEqp.eqp. The first
column contains the “Unit key”.

The sizes and capacities of every unit is
specified in file EeEquipo.dsg

4.1.2 Specifying connections

Once the user has selected the units that
conform the network, he specifies the
connection among units. The connection is
specified by indicating origin and destination
ports. This information is stored in file
redeqp.cnx.

4.1.3 Specifying conditions

4.1.3.1 Initial conditions

The user specifies initial conditions of
differential variables, and starting value of
algebraic variables in file RedEqp.ini.

The numerical method produces new
approximation of the state variables within
the feasible interval: ValMin ≤ Val ≤ ValMax.

Table 4. Specification of initial conditions.

Variable Variable name
Valor Specified value for known variable; starting value for algebraic variable; or initial

value for differential variable.
Derivada Derivative value for differential variable
Conocida s if variable is known, n if variable is unknown (differential or algebraic)
ValMin Minimum allowed value
ValMax Maximum allowed value

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 169

4.1.3.2 Operating conditions

The user specifies time dependent
changes of operating variables. These
changes are defined in file RedEqp.opr

Table 5. Specification of operating conditions.

Variable: Variable name
ValDif: Variable increment
TiemRef: Reference time
TiemDif: Time increment

V
a
l
D
i
F
 TiemRef TiemDif

Fig. 6. Specification of operation.

Modo: Form of increment: (L) linear, (C)
quadratic, (S) sinoidal, (E) exponential.

Example 2

1. The following units were selected:

With their capacities:
Tank 1000 lt, Pump ½ hp, Valve ¼ in

2. The following connections between units
are specified:

3. The following conditions are defined:
Tank Mass, Tank Input flow, Pump angular
speed, Valve position.

Bb02WmLA = Vv01WmLA
Bb02PaLA = Vv01PaLA

Tn02WmLA = Bb01WmLA
Tn02PaLA = Bb01PaLA

Vv02WmLA
Vv02PaLA

Tn01WmLA
Tn01PaLA

Tn03WmLA
Tn03PaLA

Network built

Number of units = 3
Number of connections = 2

Once the network is specified and
operation condition of pump and valve is
specified, the network is analysed.

4.2 Network analysis

4.2.1 Degrees of freedom

A table of global variables in the
network is formed according to their
mathematical type. The degrees of freedom
are the number of variables that can be
specified in the network. From these
variables we can calculate the others by
solving the global system of equations. The
number of degrees of freedom is evaluated
then as:

∑∑
==

−=
m

j
jc

1

n

1 i
if F οο

 (12)

where
cj = Number of variables in connection
j
oF = Number of degrees of Freedom for
the network
of = Number of degrees of Freedom for
unit i
n = Number of units
m = Number of connections

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 170

We compare the number of degrees of
freedom with the number of specified
variables. If they agree, the system is
properly posed; otherwise, it is necessary to
review the number of specified variables.

4.3 Network initialization

Once a network is configured, to start a
simulation the user provides: a) initial
condition y0 and b) starting values of
algebraic variables x*, (Table 4). Initial
conditions can also be given as a system of
non-linear equations, for instance the mass
contained in a two phase drum must satisfy
VT = Ml/ρl + Mv/ρv . Initial conditions have
a general form I(x, u, y, dy/dt) = 0. The
DASPK solver provides facilities to handle
these types of conditions.

4.4 Network solution

The unknown state variables are solved
globally, whether they contain recycles or
not. Solution is achieved varying the value
of state variables to achieve that ||r|| →0
(Eqns 5, 6)
Once the total balances are solved (their
value is close to zero), the signal equations
are evaluated for every unit.

4.5 Network singularities

Due to the linearity on the derivatives
of the balance equations, a model is well
posed if the matrix A(y) is not singular
(Lefkopoulos and Stadtherr, 1993).

4.6 Implementation tools

For model development and analysis
C++ Compilers from Borland and Microsoft
were used. To improve the code and to test
the model-analysis tools, Codewizard and
C++Test from Parasoft were used.

5. Results

In this section we employed all the
concepts previously described in the sections
2 to 4.

A hydraulic network and steam
generation networks are built and simulated
to analyze the dynamic behavior of the
variables during the coupling of two or more
equipment with different operating
conditions, and to observe the characteristics
that the numerical method presents to solve
the equipment’s network.

5.1 Hydraulic network

The adequate operation is necessary to
avoid reverse flow in this process.
The configuration of this network is shown
in Fig. 7.

To

Va

Ta

Vb

01

02

03

02 01

01
02 01

02

03 01 02
Ba

Fig. 7. Schematic diagram of water supply.

Operating conditions: After the pump has
started up, the recirculation valve Va is
closed while the feeding valve Vb is opened.

Fig. 8 presents the changes in input
variables, Fig. 9 and 10 shows the results.
When valve Vb is open from time 20 to 40
we observe that mass in tank To diminishes
slowly, and mass flow in pump Ba increases.
Mass flow in valve Vb increases, while mass
flow in valve Va decreases slowly.

When the recirculation valve Va is
reduced from time 60 to 80 we observe that
mass in tank continues its downward trend
while mass flow of valve Va diminishes to
zero, mass flow in pump Bb diminishes.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 171

-2 .00E -01

0 .00E +00

2 .00E -01

4 .00E -01

6 .00E -01

8 .00E -01

1 .00E +00

1 .20E +00

0 2 0 40 60 8 0 1 0 0 12 0 1 40

T im e (s ec)

Va 0 0A rL A

Vb 0 0A rL A

Fig. 8. Operating conditions. Valve areas

A/Atot)..

0.00E +00

1.00E +02

2.00E +02

3.00E +02

4.00E +02

5.00E +02

6.00E +02

7.00E +02

0 20 40 60 80 100 120 140

Time (sec)
Fig. 9. Mass n tank To (Kg)

- 1

0

1

2

3

4

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0

B a 0 2 W mL A

V a 0 2 W mL A

V b 0 2 W mL A

Fig. 10. Mass flow (Kg/s)

5.2 Steam generation network

The cycle drum-superheater of a steam
generator unit is integrated by the models,
Fig.11: drum (Do), downcomer (Tb), pump
(Bb), waterwall (Ww) and superheater (SP).

Tb

02

04

01
02 01 02 01

SP

WWBb

Do

01

03

02

01 02

Fig. 11. Cycle drum-superheater.

5.2.1 Steady state test

Operating conditions: The steady state
of the network variables during a time
interval of 100 seconds from 75% of load.

Result of test. Table 6, describes the
steady state values.

Table 6.-Variables in steady stable at 75% of load.

Downcomer Pump WaterWall Drum Superheater
Pressure
2,611.94

Output Pressure
2,649.00

Pressure
2,585.02

Pressure
2,585.02

Pressure
2,540.59

Liquid Enthalpy
705.57

Liquid Enthalpy
704.60

Liquid Enthalpy
8,115.03

Steam Enthalpy
1,082.1

Steam Density
3.98

Liquid Flow
1,775.49

Liquid Flow
1,775.49

Liquid Flow
1,775.49

Steam Flow
377.84

Gas Pressure
11.54

 Angular Velocity
233.97

Metal Temperature
1,140.10

Liquid Flow
1,775.49

Gas Flow
486.87

 Liquid Volume
340.43

Gas Temperature
1,442.36

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 172

From steady state the following
variables are modified:

 ٠ The values of the pressure and enthalpy
of the waterwall are the operating
conditions; therefore these variables are
fixed at their desired value.

 ٠ The waterwall pressure (Ww02PaLA)
and drum pressure (Do02PaLA) have the
same value.

 ٠ The mass flow and enthalpy variables of
the drum have initial conditions, their values
are modified during the simulation, to
achieve the steady state value

5.2.2 Steady state behavior of the network

Time = [s]
Density = [lb/ft3]
Volume = [ft3]
Pressure = [lb/in2]
Enthalpy = [Btu/lb]
Flow = [lb/s]
Angular speed = [rad/s]
Temperature = [R]

5.2.3 Dynamic test of the network

Operating conditions. This test
simulates the steam flow at output of
superheater to environment. This simulation
is carried out by reducing the pressure of the
superheater. The steps for this test are the
following:

1.- The simulation is done at 75% load in
steady state during 100 seconds.

2.- Decrease 50% the values of the
superheater pressure at time t=100
during 2500 seconds.

3.- The simulation ran during 3000
seconds.

Results of tests. The decrease of the
superheater pressure (Sp02PaVA) reduces
steam pressure (Do00PaVS), steam density
(Do00RoVE), and liquid enthalpy
(Do00HtLS) of drum (Fig. 12), and increases
liquid density (Do00RoLS), and liquid
volume (Do00VVLE) of same equipment.
The enthalpy of waterwalls (Ww02HtLA)
and recirculating pumps (Bb02HtLA) is also
increased since the recirculating flow is
reduced.

Fig. 12. Dynamic behaviour of pressure, enthalpy, density and volume for cycle drum-superheater.

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 173

The decrease in output pressure of
superheater increases output steam flow
from drum, until the output pressure is
readjusted, Fig. 13.

Statistics of execution. The number of
function residual evaluations per time step is
shown in Fig. 14. In this figure we observe
that DAE solver takes between 10 and 19
residual evaluations, which includes the
evaluation of the numerical Jacobian per
time step. In this figure also appears the
approximation order of the integrator, which
is between first and second order.

0 500 1000 1500 2000 2500 3000
365

370

375

380

385

390

Time [s]

flo
w

 [l
b/

s]

Do03WmVA

Fig. 13. Dynamic behaviour of flow for cycle
drum-superheater.

Fig. 14. Statistics of execution of dynamic
transient.

Conclusions and related work

This work pursued the production of
computer models with characteristics of
operability, observability, configurability,
and traceability as discussed in section 2.

Having specified some standard
procedures of every model, the development
relies strongly in the advance of compilers
for the organization of these procedures, and
in operator overloading for the automatic
analysis of their expressions.

This scheme allow the agility of team
development, but reduces inconsistencies
emerged during model composing.
Additional work is required in the analysis
of process network, and in the conditions
that guarantee a well posed problem.

Remaining work

The process network is formed by
coupling a set of models, which were tested
individually. Therefore the main issues are:

Analysis of specified conditions

To analyse the specification of free
variables in a system of algebraic equations,
the main criteria is to assign output variables
to equations. Incidence matrix can be used to
detect the proper specification in equation
systems and free variables. (Morton, and
Collingwood, 1998).

To analyse the specification of free
variables in a system of Algebraic -
Differential equations, the model equations
are linearized.

0=− By
dt
dyA

Then, after Laplace transformation:

0)()(=− YsBsYsA . A proper assignment of
free variables can be specified if and only if
the degree of the polynomial det (sA – B) is
equal to the rank of B. (Soetjahjo, Go,
Bosgra, 1998).

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 174

Model discontinuities

Two possible types of discontinuities
can be present during the execution of a
model. Explicit discontinuities are expressed
in terms of the input values, u (t). In this
case the discontinuities can be predicted;
implicit discontinues are expressed in terms
of the state variables, x(t), y(t).
Discontinuities can also be reversible or
irreversible. Reversible discontinuities allow
the model to return to the previous state
when the variable(s), which caused the
discontinuity, is moved back. Irreversible
discontinuities (for instance a pipe rupture),
do not allow that the model returns to the
previous state. Irreversible discontinuities
are therefore difficult to treat. Barton and
Pantelides (1994) recommend to lock the
same time step, t + ∆t, and condition to cross
the discontinuity. After the time step is
successfully taken, it is necessary to locate
the time of the discontinuity, t ≤ tD≤ t + ∆t,
then to jump through the discontinuity with
the new condition and to restart.

Related work

Here we discuss some developments of
available environments suitable for dynamic
simulators, the general overview appears in
Table 7:
gProms has a language description is based
on the concept:
Process = Process unit + Model + Tasks.
This facility allows a excellent model
operatility.
Ascend. Allows detection of dimensional
consistency in the models. The solver offer a
detail information about sparse
characteristics during the solution.
Modelica was designed to model, simulate
and optimize or control physical systems.
ICAS includes a model generator through
DAEs, ODEs, Aes or a combination of them,
(which are solved as residuals), functions
constraints, a simulator for dynamic and
steady state and toolboxes for physical
properties, sinthesys, optimization, and
control.

Table 7. Comparison of dynamic simulators.

Computing
Environment

Semantics Discrete Spatial
Profiles

Operating DA
Solver

Links to other
environments

gProms
www.ps.ac.ic.uk/gPROMS

Declarative X X Parallel,
conditional

Numeric-
Symbolic

Fluent

Ascend
www-2.cs.cmu.edu/~ascend/

imperative X Conditional Numeric-
Symbolic

Modelica
www.modelica.org,

Imperative X Conditional BDF Simulink

ICAS
http://www.capec.kt.dtu.dk

Imperative X Conditional BDF Open

Acknowledgements

Several of the computer tools used here
were acquired through the Red Nacional de
Investigación en Informática. Authors
received a scholarship from CONACYT, and

from REDII to complete this work;
www.mor.itesm.mx/~emorales/

Alarcón-Gálvez et al. / Revista Mexicana de Ingeniería Química Vol. 3 (2004) 161-175

 175

The observations made by reviewers
helped to present a neater work.

Authors would like to acknowledge the
support of the demonstration project
“Tecnicas Avanzadas para Simulación en
Tiempo Real”, of CFE, and the support of
the PROMEP grant of SEP, both promoted
by Dr D. Resendiz.

References
Alarcón, F., Mendoza, Y., Molina, J. M., Suárez,

J. M., Rodriguez, G., Ojeda, R., Treviño,
J., Morales, J. L. and Juárez, D. (2001).
Programas para la Construcción
Sistemática de Redes de Equipos.
Technical Report CIICAp-UAEM.

Brenan, K. E., Cambell, S. L. and Petzold, L. R.
(1996). Numerical Solution of Initial-Value
Problems in Differential-Algebraic
Equations. SIAM. Philadelphia.

Bär M., Schaffner, J., Selg, W. and Zeitz, M.
(1993). Functionality and Implementation
of a Knowledge-Based Flowsheet-Oriented
user Inerfase for the Dynamic Process
Simulator DIVA. Simulation 61, 117-123.

Barton, P.I. and Pantelides, C.C. (1994).
Modeling of combined discrete/continuous
processes. AIChE Journal 40, 966-979.

Calhoun, D. and Lewandowski, A. (1994).
Design C++ Classes for Structured
Modeling y Sensitivity Analysis of
Dynamical Systems. In Proceeding of the
2nd Annual OON-SKI’94. Sunriver, Oregon
Apr 24-27, 1-15.

Cellier F. E. and Elqvist, H. (1993). Automated
Formula Manipulation Supports Objet-
Oriented Continuous-System Modeling.
IEEE Control Systems, 28-38.

Costa, R., Griño, R. and Basañez, L. (1998).
DAE Methods in Constrained Robotics
System Simulation. Computación y
Sistemas. Jan-Mar,145-160

Griewank, A. (2000). Evaluating Derivatives
Principles and Techniques of Algorithmic
Differentiation, SIAM Philadelphia.

Holibaugh R. (1991). Object Oriented
Modelling” Workshop Addendum to the
OOPSLA Proceedings. Arizona 73-77.

Law A. M. and Kelton, W. D. (1992). Simulation
Modeling and Analysis. 2nd Ed. Mc Graw
Hill.

Lefkopoulos, A. and Stadtherr, M. A. (1993).
Index Analysis for the Unsteady-State
Chemical Process Systems-I. An algorithm
for Problem Formulation. Computers in
Chemical Engineering. 17, 399-413.

Mah, R. (1990). Chemical Process Structures and
Information Flows. Butterworths, Oxford.

Molina, J. M., Zamora, J. R., Mendoza, Y. and
Juárez, D. (1999). Analysis of
computational models by operator
overloading. Memorias Congreso
Internacional de Computación, IPN, Nov,
202-206.

Morton, W. and Collingwood, C. (1998). An
equation analizer for process models.
Chemical Engineering 22, 571-585.

Ponton, J. M. and Gawthrop, P. J. (1991).
Systematic Construction of Dynamic
Models for Phase Equilibrium Processes.
Computers in Chemical Engineering, 15,
803-808.

Resendiz, D. and Nagore, G. (1994). Proyectos de
Demostración, Esenciales para el Sector
Eléctrico. Bol IIE, Ene/Feb, 9-10.

Soetjahjo, J., Go, Y. G. and Bosgra, O. O. (1998).
Diag -a structural diagnose tool for
interconnection assignment in model
building and re-use. Computers in Chemical
Engineering 22 Suppl., 933-936.

Tolsma, J. E. and Barton, P. I. (1998). On
Computational Differentiation, Computers
in Chemical Engineering.. 22, 475-490.

Zamora, J. R. Desarrollo e Implantación de
Técnicas Simbólicas y Numéricas para
Evaluación de Matrices de Iteración”. BSc
Thesis ENEP ACATLAN, UNAM.

Zanobetti D. (1989). The Simulators in Mexico
Power Station Simulators. Commission of
the European Communities 173-174.

