
REVISTA MEXICANA DE INGENIERIA QUIMICA Vol. 3 (2004)   161-175 

Publicado por la Academia Mexicana de Investigación y Docencia en Ingeniería Química, A. C 161

DESIGNING COMPONENTS FOR DYNAMIC PROCESS SIMULATION 
 

DISEÑO DE COMPONENTES PARA LA SIMULACION DE PROCESOS DINAMICOS 
 

F. Alarcón-Gálvez 1, J. González-Herrera 2, R. Guzmán-Sánchez 3, E. Morales-Manzanares 4, 
C. Montiel-Maldonado 5 and D. Juárez-Romero 6* 

 
1 Centro Nacional de Investigación y Desarrollo Tecnológico (Cenidet) 

2 Instituto Mexicano del Petróleo Av. 100 Metros, México, D.F. 
3 ESIQIE, IPN Unidad Profesional "Adolfo López Mateos" 

4 ITESM Campus Morelos, Av. Paseo de la Reforma 182-A, Morelos 
5 Departamento de Ing. Química, Facultad de Química Cd. Universitaria 04510, UNAM 

6 Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, 
Col. Chamilpa, C. P. 62210 Cuernavaca, Morelos, México. 

 
Abstract 

This work shows a prototype system for the construction of dynamic models for simulation of process plant networks 
with an improved warranty of producing a well posed system of differential algebraic equations. Every model 
contains a set of specified procedures that are coded in the C programming language, and it is automatically analysed 
with similar principles to those of the algorithmic differentiation.  Moreover, the scheme to connect two pieces of 
equipment to ensemble the equations and associated iteration matrix is presented. The proof of these concepts is 
showed through dynamic simulations of a water supply cycle, and a drum-superheater cycle. 
 
Keywords: model building, dynamic model testing, flowsheet composing. 
 
Resumen 

Este trabajo presenta un sistema prototipo para la construcción y simulación de modelos dinámicos de redes de 
plantas de proceso que garantiza la producción de un sistema correctamente planteado de ecuaciones àlgebro-
diferenciales. Cada modelo contiene un conjunto de procedimientos específicos codificados en C y es 
automáticamente analizado con principios similares a los utilizados en la diferenciación algorítmica.  También se 
presenta el mecanismo para el ensamblado de ecuaciones y matrices de iteración asociadas para  componentes de 
equipo. La prueba de estos conceptos se muestra por medio de simulaciones dinámicas de un sistema de 
aprovisionamiento de agua y un ciclo de supercalentamiento en un tanque.  
 
Palabras clave: construcción de modelos, prueba de modelos dinámicos, generación de diagramas de proceso.  
 
1. Introduction 

To support projects for the 
development of process plant simulators such 
as those of the Training Operators Centre, 
CAOI in Tula, Hidalgo, and demonstration 
projects at the Electrical Research Institute, 
Mexico (Zanobetti 1989; Resendiz y Nagore, 
1994), several academic undertakings have 
been executed. Solving of hydraulic 
networks with high interaction required 
robust nonlinear equation solver. Also when 
a process unit for dynamic simulation is 
coupled to another, it can increase, maintain 
or decrese its stability, thus, we concluded 

that implicit Differential-Algebraic solvers 
are needed (Alarcón et al., 2001). 

In the present work, we developed tools 
for the analysis of dynamic models, which are 
represent by DAE equations, (Molina et al, 
1999) and will compose a process network 
The present work is based in two premises 
aiming to represent a process by connecting 
process units, which can be analyzed and 
solved: 

The first premise is the decompositions 
of the network suggested by Bär et al. (1993), 
Eq. 1, which allows us to represent a process 
network by connecting the process units, 
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through streams, given a configuration of the 
existing plant. 
Process = process – units + 

streams + configuration  (1) 
 

The second premise is based on the 
computational graph used to represent 
internally a computer code, Eq. 2: 
 
Process unit = operators + variables + 

control flow   (2) 
 

This allows us to analyze different 
characteristics of a process unit following the 
computational graph.  This graph, which is 
produced while the program is executed, 
describes the behaviour of variables that are 
modified by the operators in accordance with 
the control flow: 

From these premises, the development 
of the paper is as follows: the second section 
shows a model decomposition based on 
process units, their characteristics, and their 
form of analysis. Section three is related to 
the type of connections used to build process 
networks and the form of evaluating physical 
properties. Section fourth deals with the 
network composition, the solution method, 
and implementation tools.  The fifth section 
shows results of applying this scheme, and 
finally conclusions derived from this work 
are presented. 
 
2. Process units 

Some of the main issues related to 
object oriented modeling are (Holibaugh, 
1991): to define representation techniques to 
asses if a model has a high fidelity behavior, 
to test if a model is properly formed and to 
verify its completeness and consistency. To 
care for these issues, we required the 
following characteristics of a model: 

 

Operability: To represent the full set of 
operating regions as the reference unit i.e.: 
starting up, transition (forward and reverse 
flow), and malfunctions.  This feature is 

essential to train operators for dealing with 
failures or unsafe conditions. 
Configurability: To allow the same changes 
in unit sizes and feasible connections as the 
reference unit. 
 

Observability: To be able to obtain the state 
of the model from the model outputs.  This 
characteristic allows the validation of the 
model using the measurements obtained in 
the reference process unit.  
 

Traceability: To be able to trace different 
characteristics of the model.  For instance, the 
matrix that relates equations to variables 
(incidence matrix) used for the detection of 
arithmetic errors. This requirement also needs 
that the model’s code is clearly written with 
expressive and standard language features. 
 
2.1 Model characteristics 

We use three views to describe a model: 

- Phenomenological view 
- Mathematical view 
- Computational view 

Each view will be discussed in the 
following subsections 
 
2.1.1 Phenomenological view 

This view represents the model as the actual 
unit works. Consider the working regions of a 
drum for steam generation, Fig. 1: 
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Fig. 1. Drum model. 
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-   During start up: Filling, heating, emptying. 
- During transition: Evaporating, steam 

generation, steam released to atmosphere 
- During malfunctions: Leaking due to 
couple rupture, loosing pressure due to a 
down-stream failure, changing steam 
pressure gradient due to up-stream 
oscillations. 
 

The outcome is that a model, which 
represents all these regions, must contain 
conditional clauses to delimit the equations 
according to each region.  Some of these 
conditional clauses can be nested. 

Balance equations for this model can be 
obtained applying Bernoulli’s Equation for 
two phases: 
 

∑−+
iW

dt
vl dM  dM

      = r  Mass (3) 

 
Pin - P out + g ∑ρ∆Z = r Momentum (4) 

 

∑−
+

ii
vvll WH

dt
MdHMdH =r        Energy (5)  

 
Where: 
 
M  = Mass  H  = Enthalpy 
ρ   = Density  g = Gravity 
P   = Pressure  W = Mass flow 
∆Z = Height  R = Residuals vector 
 

We represent balance equations as 
residuals to allow a wide range of operation 
conditions without assuming a specific 
causality. The terms of these equations are 
evaluated according to the working regions. 

 
2.1.2. Mathematical view 

This view provides the required 
functionality for the model.  For this purpose 
we use the following classification of 
equations (Ponton and Gawtrhop, 1991): 

 
Balance equations.  These represent changes 
in mass, momentum and energy. 

Transfer mechanism equations.  These define 
the rate of transfer into, out of, or between 
phases. 
Constitutive relationships: These equations 
relate intensive variables in terms of 
extensive variables. 
Constraints: These expressions limit the 
application of the equations (maximum or 
minimum flows), or verify that adequate 
values are used as arguments of arithmetic 
expressions. 

The model equations representing the 
behavior of a unit can be grouped in a 
mathematical form as: 
 

V = a(u, x, y, p ) 

Intermediate equations (6) 
 

A(y) 
dt

tdy )(  – f(t, u, v, x, y) = rd 

Differential equations   (7) 
 

G(t, x, y, u) = ra 

Algebraic equations (8) 
 

Z = h(p, u, v, x, y) 

Signal equations (9) 
 

Where: 
p    ≡ unit parameters, which do not vary with 

time. 
u(t) ≡ external continuous variables. 
v(t) ≡ intermediate variables that are used to 

store the value of some computations. 
x(t) ≡ algebraic state variables that do not 

have accumulation, but change with time. 
y(t) ≡ differential state variables, which have 

accumulation, or time derivatives 
z  ≡ signals, variables whose value can be 

displayed in panels or registers. 
ra   ≡ algebraic residuals. 
rd   ≡ differential residuals. 
a, f, g, h are real valued functions. 
A(y) is a nonsingular real matrix. 
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The procedural (explicit) form of 
intermediate equations allows efficiency in 
the calculation, while the declarative form of 
the balance equations (the equation presents 
a relationship between the variables) allows 
the flexibility required for the specified 
variables. 
 
2.1.3 Computational view 

The computational view is 
implemented by coding the equations in a set 
of procedures.  To increase understanding of 
the code among users, and to detect possible 
coding errors we use a common model 
description. This is composed by procedures 
and variables with a specific naming. 
 
2.1.4 Naming of model’s procedures 

The user writes the model in standard C 
language with the name of the unit as its file 
name EeEquipo.c and header 
EeEquipo.h. (Ee is replaced with two 
literals representing the referred unit). As we 
shall see ahead, once the model is 
successfully tested it is automatically 
converted in a C++ model class. Every 
process unit is built within a set of 
procedures that contain the different types of 
equations, coded by the developer with 
predefined names, Table 1. 

 
Table 1. Standard procedures in a model. 

Procedure 
Name 

Purpose 

Scale() Defines geometry and capacity 
parameters, p. 

Start 
(Time) 

Sets initial, x*, and starting 
conditions, y0

. 
Behave 
(Time, 
EeR[]) 

Evaluates the intermediate 
variables, and evaluates the 
residuals of the conservation 
equations, ra, rd. 

Operate 
(Time) 

Modifies external variables, u. 

Signal 
(Time) 

Evaluates signal variables, z. 

2.1.5 Naming of types of model’s variables 

The variables allowed are of basic type 
(integers, floats) or arrays. No composite 
types like structures are allowed.  State 
variables, inputs, parameters and signals are 
global variables. 

The intermediate variables are local, 
since they are only used in the model. Other 
variables are global. The use of global 
variables allows using the same form of 
invoking different type of models. The user 
can also code other procedures required for 
the model. 

The following nomenclature that 
defines the different types of variables is 
adopted:  
 

a global variable name is composed by 8 
characters with a general form Ee##ΦΦ ϕT. 
 
 Tk 01 Ht V A   
    |      |     |      |    |_____Type      : Algebraic 
    |      |     |      |________Phase    : Vapor 
    |      |     |___________ Property: Enthalpy 
    |      |______________ Port      : 01 
    |__________________Unit     : Tank 
 
a local variable name is composed by six 
characters since it does not have the unit 
identifier. 
 
2.2 Physical properties 

The requirements of the functions 
constructed to evaluate physical properties of 
fluids are: 
 

    ٠ Completeness. To cover all the range of 
working regions.  

    ٠ Explicitness. To be explicit in the 
required physical properties to avoid inner 
iterations that could deteriorate the global 
iteration cycle. 

    ٠ Functionality. To obtain properties and 
their first derivatives by continuous 
expressions, since some expressions in the 
model might also require derivatives. Newton 
method requires continuity in the derivatives 
to maintain the direction of convergence. 
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    ٠ Accuracy. To compute the values of 
physical properties to fulfil the required 
precision. 
 

To fulfil these requirements, we 
approximate fluid properties by piecewise-
continuous polynomials in terms of pressure 
and enthalpy. Given the value of the state 
variables, a model evaluates its required 
physical properties.  For the saturated phase: 
 

ϕs = ϕ s ( √P)    (10) 

Otherwise:      ϕ = ϕ ( √P, H)  (11) 

 
First derivatives with respect to the 

state variables are also evaluated.  First 
derivatives are evaluated as the derivatives of 
these polynomials. These derivatives have 
only slight discontinuities in junctions 
between segments of every polynomial, 
which do not affect the iteration process. 
 
2.3 Model analysis 

Model analysis is necessary to obtain 
its algorithmic properties so it can reproduce 
high-fidelity behaviour. After a given 
formulation was defined, a model is coded 
and analyzed. 

Our scheme for model-analysis is based 
on the schemes used by Grienwank (2000) 
for algorithmic differentiation using operator 
overloading.  The basic principle relays on 
the ensemble of the terms of an expression 
using the same computational graph to form 
the final result (Molina et al., 1999), similar 
to the chain rule.  When this model-analysis 
is executed, all possible branches, cycles and 
procedures of the code are traced. Tolsma 
and Barton (1998) based in their 
computational experiments, concluded that 
algorithmic differentiation has significant 
advantages over finite differences, symbolic 
differentiation and hand coding 
differentiation in terms of speed and memory 
usage. 

After the formulation was defined, 
models were coded and analysed to obtain: 
- Assignment & reference. This analysis 
detects uninitialized global variables, 
unassigned intermediate variables, and un-
referenced local variables that can be used to 
evaluate the balances. The correct assignation 
and reference is required to avoid difficulties 
with delay of information caused by improper 
equation sequence. 
- Structure & states. This analysis obtains the 
incidence matrix of the model. Incidence 
matrix has a row for every equation and a 
column for every variable. If a variable j 
appears in equation i, the position i,j of this 
matrix is marked (Mah, 1990). With this 
matrix it is possible to detect block of 
equations that could cause structural or 
numerical difficulties. 

Costa, Griño and Basañez (1998) 
generated models with Differential-Algebraic 
equation where its equations are 
differentiated symbolically using Maple to 
produced a Jacobian, and is solved 
numerically using DASPK, Which is a solver 
with variable order, variable step-size with 
the backward differentiation formula (Brenan 
et al,, 1996). 

However, models cannot be 
differentiated symbolically when they contain 
conditional clauses that bound the working 
regions; or cycles, which evaluate several 
compounds in a mixture. 
 
Example 1 

Starting for a particular tank model equations: 
 

/* Mass balance */ 
TnR[0] = Tn00MaLD - Tn01WmLA + 
Tn02WmLA - Tn03WmLA; 
TnR[1] = Tn02PaLA - Am20PaLA - 
(9.81 * Tn00MaLE / Tn00Ar_P) + 
(Tn02Pd_P * fabs(Tn02WmLA) * 
Tn02WmLA) - Tn02Pa_P; 
/* Momentum balances */ 
TnR[2] = Tn03PaLA - Am20PaLA  + 
(Tn03Pd_P * fabs(Tn03WmLA) * 
Tn03WmLA) - Tn03Pa_P; 
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The incidence matrix obtained for this model 
is: 

Residual
/ 

Variable 

Tn00 
MaE or 
Tn00 
MaD 

Tn01 
WmLA 

Tn02 
WmLA 

Tn02 
PaLA 

Tn03 
PaL
A 

Tn03 
Wm
LA 

TnR[0] X X X 0 0 X 
TnR[1] X 0 X X 0 0 
TnR[2] 0 0 0 0 X X 

 
- Efficiency & robustness. This analysis 
detects vulnerable arithmetic expressions. 
Since models represented as a set of  DAEs 
offer more flexibility than models with only 
algebraic (resistance) or with only 
differential (accumulation) equations, but at 
the same time they are more fallible.  It is 
also required to evaluate the computing effort 
requirements. 

2.4 Model packing 

Once a model is successfully analyzed, 
(i.e. it does not have any type of severe 
diagnoses), it is packed.  Colhun and 
Lewandowski (1994) use classes to store the 
state variables, and ports in the developments 
of dynamic models. 

Model packing binds all model 
variables and procedures in a C++ class. It 
increases cohesion; it also allows 
incorporating several units of the same type 
in a process network. A preprocessor builds 
the following data structures and functions 
automatically, Tabla 2. 
 

 
Table 2. Data structures and procedures generated for model packing. 

 

Data structure Purpose 

Class Equipment Contains the procedures and the ports required to describe the mathematical model. 
 

Struct Port Contains the variables, which are transported from one unit to another.  One unit 
has at least one port.  Ports correspond to physical connection through which 
exchange takes place. 
 

Struct State Contains the variables that define the state of the process unit, as well as its 
maximum and minimum value allowed. 
 

Procedure Purpose 
 

Incide() Assigns the number of states, and number of balances of every process unit  
 

Couple(Port01, 
Port02) 

Assigns the relationships between the list of ports, which can be connected in a 
unit, and model’s state variables. 
 

 
3. Connectors 

3.1 Streams 

Stream is a set of variables that 
communicate a process unit with another 
without any accumulation. The number and 
type of each variable characterize a stream, 
Table 3. 

Stream variable convey state variables. 
Intermediate variables required in a model 
are reevaluated internally. 

Table 3. Type of streams. 

Stream Air - Gas Hidraulic  Thermic 
Component Wm, Pa, 

Ht 
Wm, Pa, 

Ht 
Ql, Tm 

 

3.2 Connection characteristics 

In this section we also present the 
characteristics of connections as 
phenomenological, mathematical and 
computational view. 
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3.2.1 Phenomenological view  

Physical connection is established 
between ports, Fig 2. 

 

Bb      =   Vv 

Equipment 

Operations 

PISignals 

 
Fig. 2. Coupling two units by a common stream. 

 

3.2.2. Mathematical view 

Equality is established for the elements 
of a stream. When stream Si  is connected 
with stream Sj, then Si, k = Sj,k    ∀ elements in 
the connecting stream, k. 
 
3.2.3 Computational view 

A pair of connected streams shares the 
same space in memory. Fig. 2 shows the 
mechanism used to establish model 
connections. When Bb is connected to Vv the 
residuals of the network are formed 
concatenating both sets of residuals. 

Matrix of partial derivatives for 
composed Pump-valve (Jacobian): 

 
 Bb01 

WmLA 
Bb01 
PaLA 

Bb02 
WmLA 

Bb02 
PaLA 
 

Vv01 
PaLA 

Vv02 
PaLA 

R[0] 1  0 -1 01  0  0 

R[1] 0 -1 -dBb1 1  0  0 

R[2] 0  0  1 0 -1  0 

R[3] 0  0  0 -
Vv00 
Ar_P 

dVv1 Vv00 
Ar_P 

 
 

where 
 

dBb1 = Bb00Pd2P + Bb00Pd3P*(fabs(Bb02WmLA) + 
Bb02WmLA*sign(Bb02WmLA)) 
 
dVv1 = Vv00Pd_P*(fabs(Vv02WmLA) + 
Vv02WmLA)*sign(Vv02WmLA)) 
 

3.3 Connection Analysis 

A connection between two ports can be 
established if: 

 

1. Connecting ports do not belong to the same 
process unit. 

 

2. Both ports have the same type. 

3. They have complementary direction of 
connection (input with output) or one of 
them is an in/output port. Figs. 3 to 5 show 
different types of connections: 

 

 
Fig. 3. Indistinct Ports. 

 

 
Fig. 4. Complementary ports. Feasible. 

 

 

 
Fig. 5. Unfeasible connection. 

 
Figs.3 and 4 present feasible 

connections. In Fig. 5 an infeasible 
connection is presented, since both have the 
same connecting direction.  
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4. Network 

4.1 Network specification 

A process model based on physical 
principles implies the specification of 
balance equations.  When the residual form 
of balance equations (as in Eqns 7, 8) is used 
the following advantages are obtained: 

 

٠ They fully describe the state of a system in 
relation to its material properties and its 
geometry (Gerstlauer, et al., 1994). 
٠ They represent accurately the global 
behavior without assuming any causality or 
strength of interaction between neighboring 
units (Cellier, Hilding, Elquist, 1993). 
٠ They are additive. The total residual vector 
can be formed by sequential aggregation of 
the residuals of every model, according to the 
specific network configuration. 

 
Hence, the user composes the process 

network by a set of process units that are 
connected by ports transporting streams.  A 
process network is built specifying the 
connection among units analogous to an 
electric wiring or to a process piping. 

The network is defined in a unique 
form by: 
1. Specifying the components 
2. Specifying the connections 
3. Specifying the initial and operating 
conditions. 
 

We shall explain every stage in the 
following subsections. 
 
4.1.1 Specifying components 

The user selects the elements used to 
compose a network from a process unit 
“menu” answering Yes/No.  This “menu” is 
located in the file RedEqp.eqp. The first 
column contains the “Unit key”. 

The sizes and capacities of every unit is 
specified in file EeEquipo.dsg 
 
4.1.2 Specifying connections 

Once the user has selected the units that 
conform the network, he specifies the 
connection among units. The connection is 
specified by indicating origin and destination 
ports. This information is stored in file 
redeqp.cnx. 
 
4.1.3 Specifying conditions 

4.1.3.1 Initial conditions 

The user specifies initial conditions of 
differential variables, and starting value of 
algebraic variables in file RedEqp.ini. 

The numerical method produces new 
approximation of the state variables within 
the feasible interval: ValMin ≤ Val ≤ ValMax. 
 

 

 
 

Table 4. Specification of initial conditions. 

Variable Variable name 
Valor Specified value for known variable; starting value for algebraic variable; or initial 

value for differential variable.  
Derivada Derivative value for differential variable 
Conocida s if variable is known, n if variable is unknown (differential or algebraic) 
ValMin Minimum allowed value  
ValMax Maximum allowed value 
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4.1.3.2 Operating conditions 

The user specifies time dependent 
changes of operating variables. These 
changes are defined in file RedEqp.opr 

 
Table 5. Specification of operating conditions. 

Variable: Variable name 
ValDif:  Variable increment 
TiemRef:  Reference time 
TiemDif:  Time increment 

 

V 
a 
l 
D 
i 
F  
           TiemRef   TiemDif 

  
Fig. 6. Specification of operation. 

 

Modo:  Form of increment: (L) linear, (C) 
quadratic, (S) sinoidal, (E) exponential. 
 
Example 2 

1. The following units were selected:  

 
 

With their capacities: 
Tank 1000 lt, Pump ½ hp, Valve ¼ in 
 
2. The following connections between units 
are specified: 
 

 

3. The following conditions are defined: 
Tank Mass, Tank Input flow, Pump angular 
speed, Valve position. 
 

Bb02WmLA = Vv01WmLA 
Bb02PaLA = Vv01PaLA 

Tn02WmLA = Bb01WmLA
Tn02PaLA = Bb01PaLA

Vv02WmLA
Vv02PaLA

Tn01WmLA
Tn01PaLA 

Tn03WmLA 
Tn03PaLA 

 
Network built 

Number of units            = 3 
Number of connections = 2 
 

Once the network is specified and 
operation condition of pump and valve is 
specified, the network is analysed. 

 
4.2 Network analysis 

4.2.1 Degrees of freedom 

A table of global variables in the 
network is formed according to their 
mathematical type.  The degrees of freedom 
are the number of variables that can be 
specified in the network.  From these 
variables we can calculate the others by 
solving the global system of equations. The 
number of degrees of freedom is evaluated 
then as: 
 

∑∑
==

−=
m

j
jc

1

n

1  i
if  F οο

  (12) 

 

where 
cj  = Number of variables in connection 
j 
oF  = Number of degrees of Freedom for 
the network 
of  = Number of degrees of Freedom for 
unit i 
n  = Number of units 
m = Number of connections 
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We compare the number of degrees of 
freedom with the number of specified 
variables.  If they agree, the system is 
properly posed; otherwise, it is necessary to 
review the number of specified variables. 

 

4.3 Network initialization 

Once a network is configured, to start a 
simulation the user provides: a) initial 
condition y0 and b) starting values of 
algebraic variables x*, (Table 4). Initial 
conditions can also be given as a system of 
non-linear equations, for instance the mass 
contained in a two phase drum must satisfy 
VT = Ml/ρl + Mv/ρv .  Initial conditions have 
a general form I(x, u, y, dy/dt) = 0. The 
DASPK solver provides facilities to handle 
these types of conditions.  
 

4.4 Network solution 

The unknown state variables are solved 
globally, whether they contain recycles or 
not. Solution is achieved varying the value 
of state variables to achieve that ||r|| →0 
(Eqns 5, 6) 
Once the total balances are solved (their 
value is close to zero), the signal equations 
are evaluated for every unit. 
 

4.5 Network singularities 

Due to the linearity on the derivatives 
of the balance equations, a model is well 
posed if the matrix A(y) is not singular 
(Lefkopoulos and Stadtherr, 1993). 
 

4.6 Implementation tools 

For model development and analysis 
C++ Compilers from Borland and Microsoft 
were used. To improve the code and to test 
the model-analysis tools, Codewizard and 
C++Test from Parasoft were used. 
 

5. Results 

In this section we employed all the 
concepts previously described in the sections 
2 to 4. 

A hydraulic network and steam 
generation networks are built and simulated 
to analyze the dynamic behavior of the 
variables during the coupling of two or more 
equipment with different operating 
conditions, and to observe the characteristics 
that the numerical method presents to solve 
the equipment’s network. 
 
5.1 Hydraulic network 

The adequate operation is necessary to 
avoid reverse flow in this process. 
The configuration of this network is shown 
in Fig. 7. 
 

To 

Va 

Ta 

Vb 

01 

02 

03 

02 01 

01 
02 01 

02 

03 01 02 
Ba 

Fig. 7. Schematic diagram of water supply. 
 

Operating conditions: After the pump has 
started up,  the recirculation valve Va is 
closed while the feeding valve Vb is opened. 

Fig. 8 presents the changes in input 
variables, Fig. 9 and 10 shows the results. 
When valve Vb is open from time 20 to 40 
we observe that mass in tank To diminishes 
slowly, and mass flow in pump Ba increases.  
Mass flow in valve Vb increases, while mass 
flow in valve Va decreases slowly. 

When the recirculation valve Va is 
reduced from time 60 to 80 we observe that 
mass in tank continues its downward trend 
while mass flow of valve Va diminishes to 
zero, mass flow in pump Bb diminishes. 
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Fig. 8. Operating conditions. Valve areas 
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Fig. 10. Mass flow (Kg/s) 
 
 

5.2 Steam generation network 

The cycle drum-superheater of a steam 
generator unit is integrated by the models, 
Fig.11: drum (Do), downcomer (Tb), pump 
(Bb), waterwall (Ww) and superheater (SP). 
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Fig. 11. Cycle drum-superheater. 

 
5.2.1 Steady state test 

Operating conditions: The steady state 
of the network variables during a time 
interval of 100 seconds from 75% of load. 

Result of test.  Table 6, describes the 
steady state values. 

 

Table 6.-Variables in steady stable at 75% of load. 

Downcomer Pump WaterWall Drum Superheater 
Pressure 
2,611.94 

Output Pressure 
2,649.00 

Pressure 
2,585.02 

Pressure 
2,585.02 

Pressure 
2,540.59 

Liquid Enthalpy 
705.57 
 

Liquid Enthalpy 
704.60  

Liquid Enthalpy 
8,115.03 

Steam Enthalpy 
1,082.1 

Steam Density 
3.98 

Liquid Flow 
1,775.49 
 

Liquid Flow 
1,775.49 

Liquid Flow 
1,775.49 

Steam Flow 
377.84 

Gas Pressure 
11.54 

 Angular Velocity 
233.97 
 

Metal Temperature 
1,140.10 

Liquid Flow 
1,775.49 

Gas Flow 
486.87 

   Liquid Volume 
340.43 

Gas Temperature 
1,442.36 
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From steady state the following 
variables are modified: 
 

    ٠ The values of the pressure and enthalpy 
of the waterwall are the operating 
conditions; therefore these variables are 
fixed at their desired value. 
 

    ٠ The waterwall pressure (Ww02PaLA) 
and  drum pressure ( Do02PaLA) have the 
same value. 
 

    ٠ The mass flow and enthalpy variables of 
the drum have initial conditions, their values 
are modified during the simulation, to 
achieve the steady state value 
 
5.2.2 Steady state behavior of the network 

Time  =  [s] 
Density  =  [lb/ft3] 
Volume  =  [ft3] 
Pressure  =  [lb/in2] 
Enthalpy  =  [Btu/lb] 
Flow  =  [lb/s] 
Angular speed  =  [rad/s] 
Temperature  =  [R] 

 
 

5.2.3 Dynamic test of the network 

Operating conditions. This test 
simulates the steam flow at output of 
superheater to environment. This simulation 
is carried out by reducing the pressure of the 
superheater. The steps for this test are the 
following: 
 

1.- The simulation is done at 75% load in 
steady state during 100 seconds. 

2.- Decrease 50% the values of the 
superheater pressure at time t=100 
during 2500 seconds. 

3.- The simulation ran during 3000 
seconds. 

 

Results of tests. The decrease of the 
superheater pressure (Sp02PaVA) reduces 
steam pressure (Do00PaVS), steam density 
(Do00RoVE), and liquid enthalpy 
(Do00HtLS) of drum (Fig. 12), and increases 
liquid density (Do00RoLS), and liquid 
volume (Do00VVLE) of same equipment.   
The enthalpy of waterwalls (Ww02HtLA) 
and recirculating pumps (Bb02HtLA) is also 
increased since the recirculating flow is 
reduced. 

 

 
Fig. 12.  Dynamic behaviour of pressure, enthalpy, density and volume for  cycle drum-superheater. 
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The decrease in output pressure of 
superheater increases output steam flow 
from drum, until the output pressure is 
readjusted, Fig. 13. 

 

Statistics of execution. The number of 
function residual evaluations per time step is 
shown in Fig. 14. In this figure we observe 
that DAE solver takes between 10 and 19 
residual evaluations, which includes the 
evaluation of the numerical Jacobian per 
time step.  In this figure also appears the 
approximation order of the integrator, which 
is between first and second order. 
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Fig. 13. Dynamic behaviour of flow for  cycle 
drum-superheater. 
 

 
Fig. 14. Statistics of execution of dynamic 
transient. 

Conclusions and related work 

This work pursued the production  of 
computer models with characteristics of 
operability, observability, configurability, 
and traceability as discussed in section 2. 

Having specified some standard 
procedures of every model, the development 
relies strongly in the advance of compilers 
for the organization of these procedures, and 
in operator overloading for the automatic 
analysis of their expressions. 

This scheme allow the agility of team 
development, but reduces inconsistencies 
emerged during model composing. 
Additional work is required in the analysis 
of process network, and in the conditions 
that guarantee a well posed problem. 

 
Remaining work 

The process network is formed by 
coupling a set of models, which were tested 
individually. Therefore the main issues are: 
 
Analysis of specified conditions 

To analyse the specification of free 
variables in a system of algebraic equations, 
the main criteria is to assign output variables 
to equations. Incidence matrix can be used to 
detect the proper specification in equation 
systems and free variables.  (Morton, and 
Collingwood, 1998). 

To analyse the specification of free 
variables in a system of Algebraic -
Differential equations, the model equations 
are linearized. 

 

0=− By
dt
dyA  

 
Then, after Laplace transformation: 

0)()( =− YsBsYsA . A proper assignment of 
free variables can be specified if and only if  
the degree of the polynomial det (sA – B) is 
equal to the rank of B. (Soetjahjo, Go, 
Bosgra, 1998). 
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Model discontinuities 

Two possible types of discontinuities 
can be present during the execution of a 
model.  Explicit discontinuities are expressed 
in terms of the input values, u (t).  In this 
case the discontinuities can be predicted; 
implicit discontinues are expressed in terms 
of the state variables, x(t), y(t). 
Discontinuities can also be reversible or 
irreversible. Reversible discontinuities allow 
the model to return to the previous state 
when the variable(s), which caused the 
discontinuity, is moved back. Irreversible 
discontinuities (for instance a pipe rupture), 
do not allow that the model returns to the 
previous state.   Irreversible discontinuities 
are therefore difficult to treat.  Barton and 
Pantelides (1994) recommend to lock the 
same time step, t + ∆t, and condition to cross 
the discontinuity.  After the time step is 
successfully taken, it is necessary to locate 
the time of the discontinuity,  t ≤ tD≤ t + ∆t, 
then to jump through the discontinuity with 
the new condition and to restart. 

Related work 

Here we discuss some developments of 
available environments suitable for dynamic 
simulators, the general overview appears in 
Table 7: 
gProms has a language description is based 
on the concept: 
Process = Process unit + Model + Tasks. 
This facility allows a excellent model 
operatility. 
Ascend. Allows detection of dimensional 
consistency in the models. The solver offer a 
detail information about sparse 
characteristics during the solution. 
Modelica was designed to model, simulate 
and optimize or control physical systems. 
ICAS includes a model generator through 
DAEs, ODEs, Aes or a combination of them, 
(which are solved as residuals), functions 
constraints, a simulator for dynamic and 
steady state and toolboxes for physical 
properties, sinthesys, optimization, and 
control. 

 

Table 7. Comparison of dynamic simulators. 

Computing 
Environment 

Semantics Discrete Spatial 
Profiles 

Operating DA 
Solver 

Links to other 
environments  

gProms 
www.ps.ac.ic.uk/gPROMS 
 

Declarative X X Parallel, 
conditional 

Numeric- 
Symbolic 

Fluent 

Ascend 
www-2.cs.cmu.edu/~ascend/ 
 

imperative X  Conditional Numeric-
Symbolic 

 

Modelica 
www.modelica.org, 
 

Imperative X  Conditional BDF Simulink 

ICAS 
http://www.capec.kt.dtu.dk 
 

Imperative X  Conditional BDF Open 
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